Catalyzed-assisted Manufacture of Olefins (CAMOL): Realizing Novel Operational Benefits from Furnace Coil Surfaces

> Steve Petrone, Yan Chen and Robert Deuis Quantiam Technologies Inc.

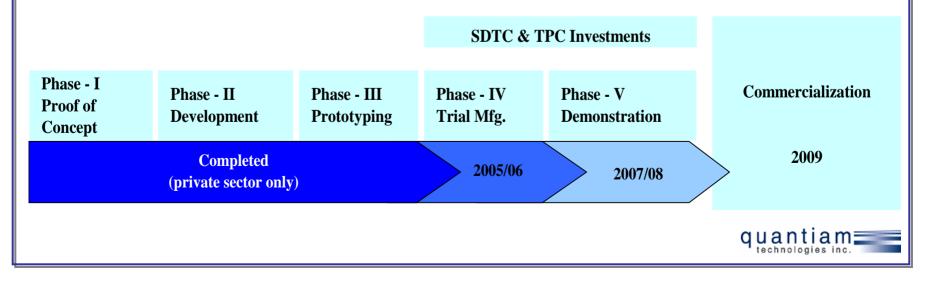
Les Benum, David Gent, Randy Saunders and Chi Wong NOVA Chemicals Corporation

> AIChE 2008 Spring National Meeting 20th Ethylene Producers' Conference New Orleans, Louisiana - April 8, 2008

Catalyzed-assisted Manufacture of Olefins (CAMOL)

- 1. Background
- 2. Technology Objectives
- 3. Laboratory-scale Test Results
- 4. Pilot-scale Test Results
- 5. Commercial-scale Test Results
- 6. Conclusions and Future Work

Catalyzed-assisted Manufacture of Olefins (CAMOL)



- NOVA Chemicals Corporation
- NOVA Research & Technology Corporation (NRTC)
- Sustainable Development Technology Canada (SDTC)
- Industry Canada Technology Partnerships Canada (TPC)

NOVA Chemicals, Joffre, Alberta – World Scale Ethylene and Polyethylene Site

CAMOL Technology Objectives

Primary Benefits Targeted

1. Coke-free performance through:

- surface inertness to filamentous (catalytic) coke
- surface catalyzed gasification of amorphous (pyrolytic) coke

2. Thermal stability of overall coating, >1100°C (>2012°F)

 with thermal stability of outermost surface, minimum of 100-150°C (212-302°F) > chromia (as reference)

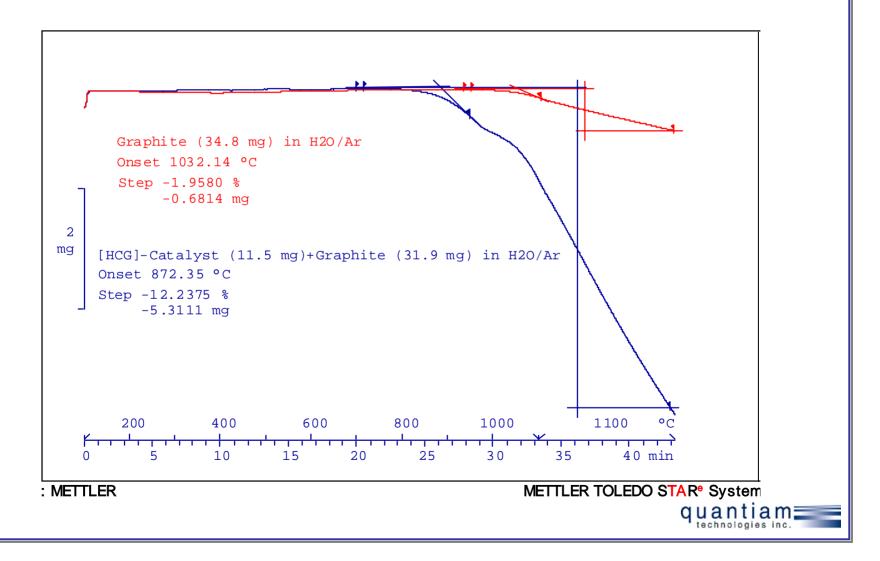
3. Resistance to broad range of materials degradation processes

- carburization
- internal oxidation
- sulfidation
- other forms of corrosion

Overall, targeted 21 chemical, physical and thermo-mechanical properties to achieve commercial viability

CAMOL Coatings Advanced for Olefins Furnaces

Coating System	Coating Catalytic Properties	Primary Feedstocks	Targeted Maximum Temperatures
CAMOL LCG	 Low-level catalytic gasification High-level surface coverage 	 Ethane/Propane Butane Light Naphthas (?) 	>1100°C (>2012°F)
CAMOL HCG	 High-level catalytic gasification Low-level surface coverage 	ButaneNaphthas	
To Be Determined	 Low-temperature catalytic gasification efficacy Low-Medium levels surface coverage 	• TLE surfaces operating at lower temperatures	400-700°C (752-1292°F)

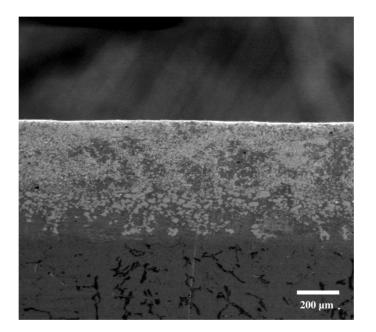


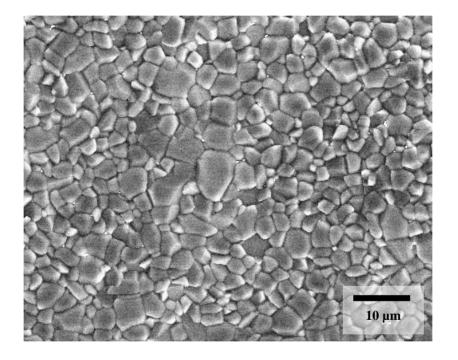
Laboratory-scale Results Achieved

Of 21 chemical, physical and thermo-mechanical properties targeted – success realized on most fronts; some optimizations to complete by end-of-2008

Surface Properties for a Low-coking Environment			
Inertness to filamentous coking	High		
Gasification of amorphous cokeLow-catalytic Gasification coating (LCG)High-catalytic Gasification coating (HCG)	Tunable Low gasifier High gasifier		
Resistance to Materials Degradation			
Carburization Resistance	High		
Internal Oxidation Resistance	High		
Sulfur Resistance (to 500 ppm; higher levels to complete)	High		
Hot Erosion Resistance	Med-High		
	qua		

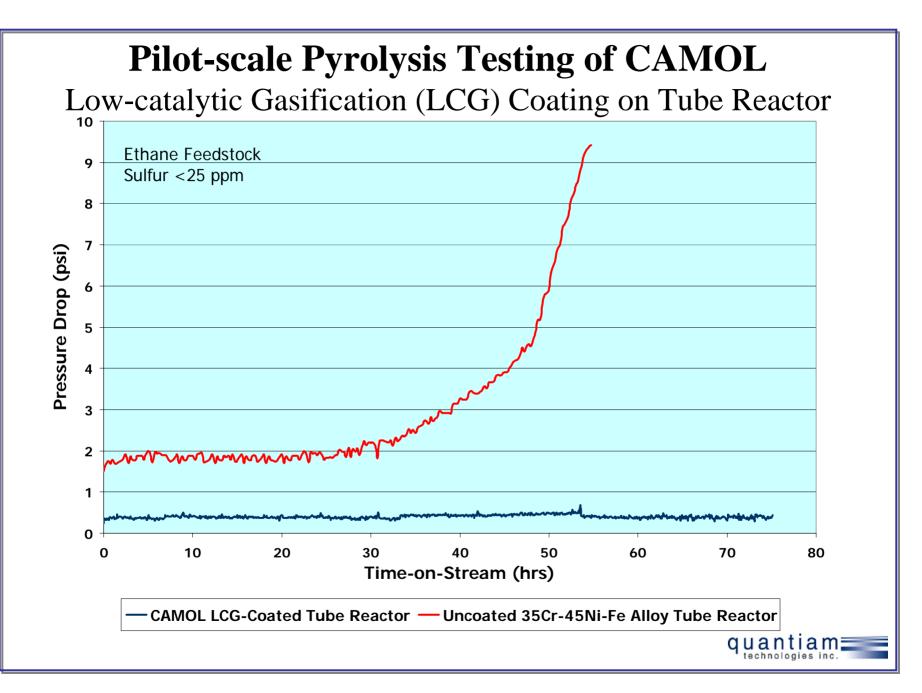
TGA Screening of Catalysts for Carbon Gasification: Catalyst used in CAMOL HCG Coating – Low Oxidizing Potential



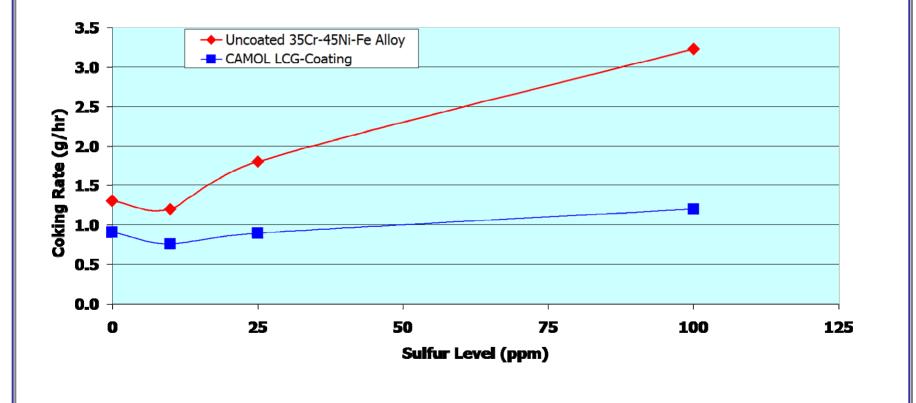

CAMOL Low-catalytic Gasification (LCG) Coating Microstructure

SEM micrograph of LCG coating – cross-sectional view

CAMOL Low-catalytic Gasification (LCG) Coating Surface


SEM micrograph of LCG surface – topview

Pilot-scale Pyrolysis Results


- Commercial-scale tube reactors, consisting of both Reference and CAMOL-coated reactors
- Ethane and butane feedstocks to-date; standard cracking conditions
- Sulfur from 0 to 100 ppm
- Testing provides assessment of coking rates and product slate information
- Autopsy, generally undertaken after final end-of-run (without decoking); assess changes to coating/surface and downstream coking

Sulfur Impact:

Coking-rate within Pilot Pyrolysis Circuit vs Sulfur Level Ethane Cracking; 65% Conversion; 0.3:1 S:H ratio

Pilot-scale Pyrolysis Testing Downstream Coking Assessment

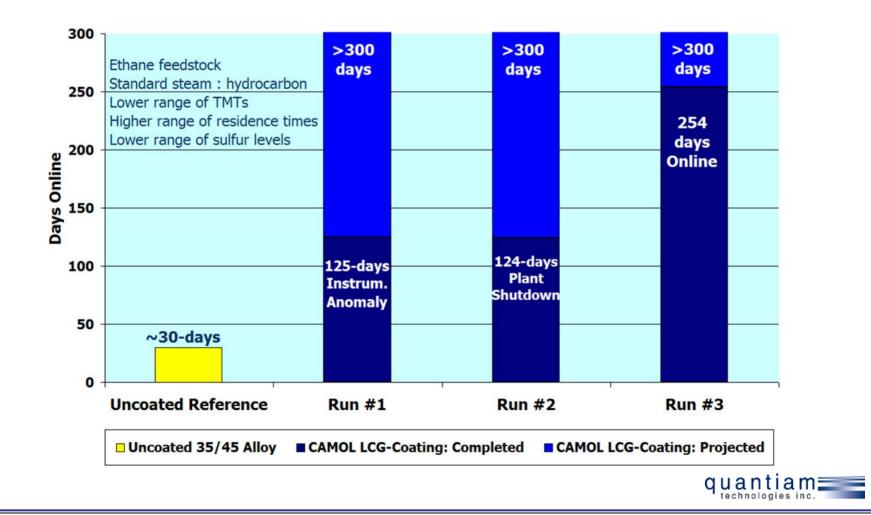
(a) Exit of CAMOL LCG-coated Reactor (no S – ethane run)

(b) Exit of Uncoated35Cr-45Ni-Fe Reactor(no S – ethane run)

Commercial-scale Field Trials

1. Smaller-scale Field trials

- coated tubes, fittings, ancillary equipment
- commenced in 2005 primarily for longevity testing
- remove for inspection and analysis, opportunistically


2. Larger-scale Field Trials

- installation of coated furnace coils in radiant sections; sufficient fractions to enable assessment of process performance
- Trial-(1) Joffre, AB: LCG coating/ethane; installed July 2006
- Trial-(2) Joffre, AB: LCG+HCG coatings/ethane; installed Mar 2008
- Trial-(3) Corunna, ON: LCG+HCG coatings / propane-naphtha; installed Mar 2008
- Add'l trials being developed with other petrochemical producers and into other furnace designs/operating environments/feedstocks

Commercial Furnace Trial with CAMOL Catalyst Coating

Low-catalytic Gasification (LCG) Coating in Furnace only – no TLE Coverage

Conclusions and Future Work

- 1. Novel catalyst coatings successfully developed, engineered for extreme operating conditions and carbon gasification (~21 properties); compositions and operating regimes possible, being mapped for range of furnaces and feedstocks.
- 2. Novel cost-effective coating mfg. technology developed for broad range of tube and fitting geometries.
- 3. Non (low) coking environment on surfaces successfully demonstrated at laboratory, pilot, and commercial-furnace scale; opportunity for catalytic impact on process.
- 4. Carbon gasification successfully realized to an engineerable (tunable) level of catalytic efficacy; maintained cap on CO and CO_2 .
- 5. Laboratory-scale mapping of operational latitude well advanced and being expanded beyond "normal" limits of pyrolysis operation.
- 6. Fields Trials: 1st furnace operating well since 2006; 2nd and 3rd trials installed in March 2008; add'l trials being advanced with other producers; expanding furnace designs, operating environments and feedstocks.
- 7. Coatings adaptable to broad range of High Temperature Alloys and being expanded.

Acknowledgements

- NOVA Chemicals Joffre AB Plantsite
- NOVA Chemicals Corunna ON Plantsite
- NOVA Research and Technology Corporation Calgary, AB
- Quantiam Technologies Inc. R&D Group Edmonton, AB
- Partial Funding by Sustainable Development Technology Canada (SDTC)
- Investment by Industry Canada Technology Partnerships Canada (TPC) Program

