SPE/ASPE Workshop

Downhole Precision Tools in HPHT Applications: Filling the Gaps

SPE/ASPE Workshop

Innovative Internal Coatings for HPHT Environments – Field Testing for the Future

Robert Deuis, David Waldbillig, Daniel Pilon, Craig Metcalfe and Steve Petrone Quantiam Technologies Inc., Edmonton, CANADA

Society of Petroleum Engineers

for **QUA** techn

Quantiam Technologies Inc.

- Advanced materials and coatings company founded in 1998
- Research and commercialization of new products focusing on coatings for internal surfaces; strong manufacturing focus
- Mission: commercially exploit matter at the nano-scale to extend the frontiers of advanced materials for extreme environment and energy intensive applications
- Goal: develop and commercialize high value, disruptive new products based on nano-scale properties

Quantiam's Platform Coating Technology

- Quantiam developed proprietary coating manufacturing process
- Macro-coating: 50 4,000 microns (2 160 thou) thick
- Metallurgical bond with substrate
- Non-line-of sight deposition enables internal or external surfaces of complex shapes & tubular products to be coated
- Low-cost manufacturing process
- Wide range of coating material formulations can be exploited

Disruptive Coated Products for Extreme Environments

Coating		Description & Protective Role	Substrate	Environment	
Petro-cher	CAMOL ^{™*}	catalytic: lower {coking rate, energy consumption, GHGs} increase throughput & ethane conversion to ethylene	25Cr-35Ni-Fe 35Cr-45Ni-Fe	olefin pyrolysis (ethylene) furnace 1160 C (2120 F), oxidising, carburising, sulfidizing	
nical	Proof of Concept	Development Prototyping Trial Ma	nufacturing	Demonstration Commercial	
Oil & Gas	Oil & Gas Series A	wear (abrasion & sliding) and mild corrosion	API 5CT J55 API 5CT L80	downhole field trials in 2014 - tigh oil formation wells	
		$\rangle \rangle \rangle$			
	Oil & Gas Series B	wear & severe corrosion Hastelloy [™] & Inconel [™] -based	API5CTJ55 API5CTL80	downhole sour gas & dissolved CO ₂	
	Oil Sands	wear (abrasion & erosion)	API5L grade	hydro-transport of bituminous sand slurry	
Aerospace & Defence	Defence	wear (abrasion, dry sliding and melt wear) thermal fatigue cracking & high temperature corrosion	AISI 41xx series 416R stainless	weapon barrel coatings ≤1200 C (2192 F), ≤440 MPa (64 ksi)	

*catalyst manufacture of olefins

	Description	ID	VHN (kg/mm ²)	HR _c
Deference	uncoated tubing	J55	190	9
Relefence	sucker rod coupling	N-1	613	56
	wear coatings	Q-1	781	63
		Q-2	896	67
Selles A		Q-3	658	58
		Q-4	788	63
	wear & corrosion coatings	Hast-1	754	62
Series B		Hast-2	828	65
		Inc-1	722	61

Microstructures – SEM Micrographs Oil & Gas Series A – Wear Coatings

SPE/ASPE Workshop

Metal matrix composite coating alloyed to substrate - diffusional interface Hard phase for enhanced wear resistance and ductile matrix phase Excellent hard phase/matrix bonding - high load bearing ability and fracture toughness

Microstructures – SEM Micrographs SPE/ASPE Workshop Oil & Gas Series B – Wear & Corrosion Coatings

Metal matrix composite coating alloyed to substrate - diffusional interface Hard phase for enhanced wear resistance and ductile matrix phase Selective constituent design – minimize galvanic corrosion within the coating

Hardness Profile for Series B Wear & Corrosion Coating

Micro-hardness Profile and OM of a Modified Hastelloy coating formulation on L80 Steel Substrate

ASTM G65: Standard test for measuring abrasion SPE/ASPE using the dry sand rubber wheel apparatus Workshop

ASTM G99: Standard test for wear testing with a pin-on-disk apparatus

SPE/ASPE Workshop

Immersion corrosion test

SPE/ASPE Workshop

Trial Manufacturing & Field Evaluation (1) SPE/ASPE Workshop

- Manufacturing facility located in Edmonton CANADA
 - 34,000 ft² primarily advanced manufacturing
 - Internal tubing coating capacity for 1.5" to 6" ID tubulars at 3M-in²/y (~32,000 linear ft/year) – adaptable to 2 ⁷/₈" OD J55 tubing
 - Plan to increase capacity to ~12M-in²/y (~127,000 ft/year); enable J55 & L80 tubing to be coated

Trial Manufacturing & Field Evaluation (2) SPE/ASPE Workshop

- Trial manufacturing (2014 2015)
 - 1-2 field trials per year, 2 ⁷/₈ inch OD J55 10 ft pups, (500 1,000 ft)
 - 2014 trial 1: (Series A) wear coating
 - 2015 trial 2: (Series B) wear & corrosion coating
 - Installation Bakken region
 - Placement directly above rod pump

HPHT – Coating Compatibility

Adhesion

- Metallurgically-alloyed
- Not cladded or mechanical bond

- Substrates
- Pitting Resistance
- Carbon steel
- Stainless steel (300s, duplex, HTAs)
- Series A PREN 64-120
 - Series B PREN 40-69
 - Duplex Steel PREN ≥40

Future Plans

- Laboratory HPHT testing
 - Combine loads (tension & compression)
 - [□] Tensile, HPHT grade steel (y.s. ≥125 ksi)
 - Stress corrosion (NACE MR0175)

Summary (1)

Development of two Oil & Gas coating systems:

- Series A wear with mild corrosion
- Series B wear & severe corrosion
- Coating properties
 - 50x improvement sliding wear resistance (J55 ref.)
 - 15x improvement abrasion resistance (J55 ref.)
 - 5x improvement corrosion resistance (J55 ref.)

Summary (2)

Commencement of trial manufacturing: Series A

- 1-2 trials of 500 1,000 ft of 2 ⁷/₈ inch OD J55
- Installation Bakken for field evaluation in 2014 2015
- Scale-up manufacturing process and coating capacity: (2015)
 - Increase capacity range 1 tubing (J55 & L80)
 - Utilize existing coating capacity of 32,000 ft/y in 2015
 - Expand up to 127,000 ft/y in 2016 as warranted

Thank-you for your Kind Attention!

Appendix for Q&A

3D Laser Mapping Measurement System SPE/ASPE Workshop

Overview

SPE/ASPE Workshop

Controller and Analysis System

Capabilities

As Received Assessment

- ID variability
- Surface defects
- Surface Roughness (?)
- Eddy-current for inclusions (future?)

Coating Assessment

- Thickness & variability (radial & longitudinal)
- Defects

Surface Assessment

- Oxide Thickness
- Coverage & Defects

3D Imaging

